Exceptional Dehn fillings and necklaces

T. Crawford, D. Gabai, R. Haraway, G. R. Meyerhoff, N. Thurston, and A. Yarmola

${ }^{1}$ School of Mathematics and Statistics, University of Sydney
${ }^{2}$ Mathematics Department, Boston College
${ }^{3}$ Mathematics Department, Princeton University

AustMS 2016 Meeting

Basic definitions

Definition

A link (knot) complement is the complement of a link (knot) in a closed orientable 3-manifold.

Basic definitions

Definition

A link (knot) complement is the complement of a link (knot) in a closed orientable 3-manifold.

Definition

A Dehn filling of a link complement M is $M \cup_{\phi} \Phi$, where Φ is a disjoint union of solid tori, and $\phi: \partial \Phi \rightarrow \partial M$ is an orientation-reversing embedding.

The traditional Dehn filling cartoon

The traditional Dehn filling cartoon

Hyperbolic manifolds

Definition

A hyperbolic manifold is a manifold whose interior has a complete Riemannian metric of constant sectional curvature -1.

Hyperbolic manifolds

Definition

A hyperbolic manifold is a manifold whose interior has a complete Riemannian metric of constant sectional curvature -1.

Theorem (Mostow Rigidity)

For $n>2$, hyperbolic n-manifolds of finite volume which are homotopy equivalent are isometric!

Hyperbolic manifolds

Definition

A hyperbolic manifold is a manifold whose interior has a complete Riemannian metric of constant sectional curvature -1.

Theorem (Mostow Rigidity)

For $n>2$, hyperbolic n-manifolds of finite volume which are homotopy equivalent are isometric!

Remark

Hyperbolic link complements have finite volume.

A conjecture

Theorem (Lackenby-Meyerhoff)
 A hyperbolic knot complement has at most 10 nonhyperbolic "exceptional" Dehn fillings.

A conjecture

Theorem (Lackenby-Meyerhoff)

A hyperbolic knot complement has at most 10 nonhyperbolic "exceptional" Dehn fillings.

Conjecture (C. McA. Gordon)

$S^{3} \backslash 4_{1}$ is the unique hyperbolic knot complement admitting 10 exceptional Dehn fillings.

Cusp geometry

The boundary of a hyperbolic knot complement M has a one-parameter family of tubular neighborhoods whose boundaries in M's interior inherit a Euclidean metric from M's metric.

Cusp geometry

The boundary of a hyperbolic knot complement M has a one-parameter family of tubular neighborhoods whose boundaries in M's interior inherit a Euclidean metric from M's metric.

Maximal cusp objects

The union of these tubular neighborhoods is called the maximal cusp neighborhood. Its boundary is also a Euclidean torus, but with a finite set of points of self-tangency. This is called the maximal cusp torus, and its area is the maximal cusp area of M, or just the area of M.

Maximal cusp objects

The union of these tubular neighborhoods is called the maximal cusp neighborhood. Its boundary is also a Euclidean torus, but with a finite set of points of self-tangency. This is called the maximal cusp torus, and its area is the maximal cusp area of M, or just the area of M.

Big area implies few exceptional fillings

Remark (Agol)

If the maximal cusp area of a hyperbolic knot complement is at least $36 / 7$, then it has fewer than 9 nonhyperbolic Dehn fillings.

Big area implies few exceptional fillings

Remark (Agol)

If the maximal cusp area of a hyperbolic knot complement is at least $36 / 7$, then it has fewer than 9 nonhyperbolic Dehn fillings.

Unfortunately, there are infinitely many hyperbolic knot complements with maximal cusp area less than 36/7.

Partial picture near a maximal cusp

Figure: Some lifts of a maximal horoball neighborhood of a cusp.

Even more partial picture near a maximal cusp

Figure: Fewer lifts of a maximal horoball neighborhood of a cusp, with labels.

Bicuspid groups

Definition

Let $B C=\langle m, n, g \mid[m, n]\rangle$. A bicuspid group is a representation $\phi: B C \rightarrow \operatorname{Isom}^{+}\left(H^{3}\right)=P S L_{2} \mathbb{C}$ such that $\left.\phi\right|_{\langle m, n\rangle}$ is injective and $\operatorname{trace}(\phi(m))=\operatorname{trace}(\phi(n))= \pm 2$.

Bicuspid groups

Definition

Let $B C=\langle m, n, g \mid[m, n]\rangle$. A bicuspid group is a representation $\phi: B C \rightarrow \operatorname{Isom}^{+}\left(H^{3}\right)=P S L_{2} \mathbb{C}$ such that $\left.\phi\right|_{\langle m, n\rangle}$ is injective and $\operatorname{trace}(\phi(m))=\operatorname{trace}(\phi(n))= \pm 2$.

Definition

A standard bicuspid group is a bicuspid group ϕ such that

$$
\phi(m)= \pm\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right), \phi(n)= \pm\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right), \text { and } \phi(g)= \pm\left(\begin{array}{cc}
c & -1 \\
1 & 0
\end{array}\right)
$$

for numbers a, b, c such that $1 \leq|a|,|a| \leq|b|$, and $|c| \leq|b|$.
The area of a standard bicuspid group is the area of the parallelogram spanned by a, b.

Agol on bicuspid groups

Lemma (Agol)

- Every discrete, torsion-free bicuspid group is conjugate to a standard one.

Agol on bicuspid groups

Lemma (Agol)

- Every discrete, torsion-free bicuspid group is conjugate to a standard one.
- Every discrete, torsion-free bicuspid group $\phi: B C \rightarrow P S L_{2} \mathbb{C}$ with infinite covolume is faithful.

Agol on bicuspid groups

Lemma (Agol)

- Every discrete, torsion-free bicuspid group is conjugate to a standard one.
- Every discrete, torsion-free bicuspid group $\phi: B C \rightarrow P S L_{2} \mathbb{C}$ with infinite covolume is faithful.
- Every discrete, faithful standard bicuspid group has area at least $2 \cdot \pi$.

Crash collars

Definition

\mathcal{P} is the (compact) space of all standard bicuspid groups with area less than $36 / 7$.

Crash collars

Definition

\mathcal{P} is the (compact) space of all standard bicuspid groups with area less than $36 / 7$.

Definition

Let $B C^{*}=B C \backslash\langle m, n\rangle$. If $w \in B C^{*}$, then the crash collar associated to w is the subset of \mathcal{P}

$$
C_{w}=\left\{\phi \in \mathcal{P}: \phi(w)\left(B_{\infty}\right) \cap B_{\infty} \neq \emptyset\right\},
$$

where B_{∞} is the "horoball at infinity"

$$
B_{\infty}=\left\{(x, y, z) \in H^{3}: z>1\right\}
$$

using the upper half space model of H^{3}.

Crash collars cover

Remark (Agol)

- If ϕ is indiscrete, then there are words $w \in B C^{*}$ such that $\phi(w)$ is arbitrarily close to the identity. Thus there is some word w such that $\phi(w)\left(B_{\infty}\right) \cap B_{\infty}$ is nonempty.

Crash collars cover

Remark (Agol)

- If ϕ is indiscrete, then there are words $w \in B C^{*}$ such that $\phi(w)$ is arbitrarily close to the identity. Thus there is some word w such that $\phi(w)\left(B_{\infty}\right) \cap B_{\infty}$ is nonempty.
- On the other hand, if ϕ has discrete image, then by Agol's lemmas, ϕ either has finite covolume or has torsion. So then there is some word w in m, n, g such that $\phi(w)\left(B_{\infty}\right)=B_{\infty}$.

Crash collars cover

Remark (Agol)

- If ϕ is indiscrete, then there are words $w \in B C^{*}$ such that $\phi(w)$ is arbitrarily close to the identity. Thus there is some word w such that $\phi(w)\left(B_{\infty}\right) \cap B_{\infty}$ is nonempty.
- On the other hand, if ϕ has discrete image, then by Agol's lemmas, ϕ either has finite covolume or has torsion. So then there is some word w in m, n, g such that $\phi(w)\left(B_{\infty}\right)=B_{\infty}$.
- Therefore, the family of crash collars over all words in m, n, g forms an open cover of the compact set \mathcal{P}.

You know what they say about covers of compact sets. . .

You know what they say about covers of compact sets. . .

Construction (MOM Project)

Using a sophisticated procedure and several CPU months, we have found a finite list L of words in m, n, g and a partition $L=B \sqcup H$ such that

You know what they say about covers of compact sets...

Construction (MOM Project)

Using a sophisticated procedure and several CPU months, we have found a finite list L of words in m, n, g and a partition $L=B \sqcup H$ such that

- $\bigcup_{w \in L} C_{w}$ covers \mathcal{P};

You know what they say about covers of compact sets. . .

Construction (MOM Project)

Using a sophisticated procedure and several CPU months, we have found a finite list L of words in m, n, g and a partition $L=B \sqcup H$ such that

- $\bigcup_{w \in L} C_{w}$ covers \mathcal{P};
- for every word $b \in B,\langle m, n, g \mid[m, n], b\rangle$ is not a subgroup of $\pi_{1}(M)$ for a hyperbolic link complement M;

You know what they say about covers of compact sets. . .

Construction (MOM Project)

Using a sophisticated procedure and several CPU months, we have found a finite list L of words in m, n, g and a partition $L=B \sqcup H$ such that

- $\bigcup_{w \in L} C_{w}$ covers \mathcal{P};
- for every word $b \in B,\langle m, n, g \mid[m, n], b\rangle$ is not a subgroup of $\pi_{1}(M)$ for a hyperbolic link complement M;
- for every word $h \in H,\langle m, n, g \mid[m, n], h\rangle$ is $\pi_{1}(M)$ for a hyperbolic link complement M; and, most importantly,

You know what they say about covers of compact sets. . .

Construction (MOM Project)

Using a sophisticated procedure and several CPU months, we have found a finite list L of words in m, n, g and a partition $L=B \sqcup H$ such that

- $\bigcup_{w \in L} C_{w}$ covers \mathcal{P};
- for every word $b \in B,\langle m, n, g \mid[m, n], b\rangle$ is not a subgroup of $\pi_{1}(M)$ for a hyperbolic link complement M;
- for every word $h \in H,\langle m, n, g \mid[m, n], h\rangle$ is $\pi_{1}(M)$ for a hyperbolic link complement M; and, most importantly,
- for every word $h \in H$, the total number of occurrences of g and g^{-1} in h is at most 7.

You know what they say about covers of compact sets. . .

Construction (MOM Project)

Using a sophisticated procedure and several CPU months, we have found a finite list L of words in m, n, g and a partition $L=B \sqcup H$ such that

- $\bigcup_{w \in L} C_{w}$ covers \mathcal{P};
- for every word $b \in B,\langle m, n, g \mid[m, n], b\rangle$ is not a subgroup of $\pi_{1}(M)$ for a hyperbolic link complement M;
- for every word $h \in H,\langle m, n, g \mid[m, n], h\rangle$ is $\pi_{1}(M)$ for a hyperbolic link complement M; and, most importantly,
- for every word $h \in H$, the total number of occurrences of g and g^{-1} in h is at most 7 .
N.B. $|H|=86$. It's not too big.

Crash collars cover corollary

What the above means is

Crash collars cover corollary

What the above means is
Corollary (MOM Project)
For every hyperbolic knot complement N with 10 exceptional fillings, there is a bicuspid subgroup ρ of $\pi_{1}(N)$ and a word $h \in H$ such that $h \in \operatorname{ker} \rho$.

A bead-by-bead stringing example

A bead-by-bead stringing example

Suppose ρ is a bicuspid group.

A bead-by-bead stringing example

Suppose ρ is a bicuspid group. We'll identify $x=\rho(x)$ for $x=m, n, g$.

A bead-by-bead stringing example

Suppose ρ is a bicuspid group. We'll identify $x=\rho(x)$ for $x=m, n, g$. Since ρ is bicuspid, m, n preserve the unit-height horoball at infinity B_{∞}.

A bead-by-bead stringing example

Suppose ρ is a bicuspid group. We'll identify $x=\rho(x)$ for $x=m, n, g$. Since ρ is bicuspid, m, n preserve the unit-height horoball at infinity B_{∞}.

Definition

For two horoballs X, Y let us write $X \succ \prec Y$ when X, Y are tangent.

A bead-by-bead stringing example

Suppose ρ is a bicuspid group. We'll identify $x=\rho(x)$ for $x=m, n, g$. Since ρ is bicuspid, m, n preserve the unit-height horoball at infinity B_{∞}.

Definition

For two horoballs X, Y let us write $X \succ \prec Y$ when X, Y are tangent.

For instance, $B_{0} \succ \prec B_{\infty}$.

A bead-by-bead stringing example

Suppose ρ is a bicuspid group. We'll identify $x=\rho(x)$ for $x=m, n, g$. Since ρ is bicuspid, m, n preserve the unit-height horoball at infinity B_{∞}.

Definition

For two horoballs X, Y let us write $X \succ \prec Y$ when X, Y are tangent.

For instance, $B_{0} \succ \prec B_{\infty}$. Therefore, $g B_{0} \succ \prec g B_{\infty}$.

A bead-by-bead stringing example

Suppose ρ is a bicuspid group. We'll identify $x=\rho(x)$ for $x=m, n, g$. Since ρ is bicuspid, m, n preserve the unit-height horoball at infinity B_{∞}.

Definition

For two horoballs X, Y let us write $X \succ \prec Y$ when X, Y are tangent.

For instance, $B_{0} \succ \prec B_{\infty}$. Therefore, $g B_{0} \succ \prec g B_{\infty}$. But $g B_{0}=B_{\infty}$.

A bead-by-bead stringing example

Suppose ρ is a bicuspid group. We'll identify $x=\rho(x)$ for $x=m, n, g$. Since ρ is bicuspid, m, n preserve the unit-height horoball at infinity B_{∞}.

Definition

For two horoballs X, Y let us write $X \succ \prec Y$ when X, Y are tangent.

For instance, $B_{0} \succ \prec B_{\infty}$. Therefore, $g B_{0} \succ \prec g B_{\infty}$. But $g B_{0}=B_{\infty}$. Hence $B_{\infty} \succ \prec g B_{\infty}=A$, an Adams horoball.

A bead-by-bead stringing example

A bead-by-bead stringing example

A bead-by-bead stringing example

Definition

A g-neme of a word in m, n, g is a token gotten by splitting the word (as a cyclic word) into sequences ending in g or G.

A bead-by-bead stringing example

Definition

A g-neme of a word in m, n, g is a token gotten by splitting the word (as a cyclic word) into sequences ending in g or G.

For instance, the g-nemes of the word $g m G m n G m g g$ are, in order, $g, m G, m n G, m g$, and g again.

A bead-by-bead stringing example

Definition

A g-neme of a word in m, n, g is a token gotten by splitting the word (as a cyclic word) into sequences ending in g or G.

For instance, the g-nemes of the word $g m G m n G m g g$ are, in order, $g, m G, m n G, m g$, and g again.

Question

What happens when you apply successive g-nemes to B_{∞} ?

A bead-by-bead stringing example

Definition

A g-neme of a word in m, n, g is a token gotten by splitting the word (as a cyclic word) into sequences ending in g or G.

For instance, the g-nemes of the word $g m G m n G m g g$ are, in order, $g, m G, m n G, m g$, and g again.

Question

What happens when you apply successive g-nemes to B_{∞} ?

$$
B_{\infty} \succ \prec g m G m n G m A \succ \prec g m G m n B_{0} \succ \prec g m B_{0} \succ \prec A \succ \prec B_{\infty} .
$$

Necklace from quasirelator

Lemma (MOM Project)

Every hyperbolic knot complement N with 10 exceptional Dehn fillings has a "necklace" of at most 7 horoball "beads" in the lift of the maximal cusp neighborhood to the universal cover.

The lifts for our example

Our dream

We want to show that the above lemma implies that every hyperbolic knot complement is a Dehn filling on a torus-based handle structure with one 1-handle and one 2-handle both of valence at most 7 .

Our dream

We want to show that the above lemma implies that every hyperbolic knot complement is a Dehn filling on a torus-based handle structure with one 1-handle and one 2-handle both of valence at most 7 . We can enumerate these structures combinatorially and then investigate their Dehn fillings all by computer.

Our dream

We want to show that the above lemma implies that every hyperbolic knot complement is a Dehn filling on a torus-based handle structure with one 1-handle and one 2-handle both of valence at most 7 . We can enumerate these structures combinatorially and then investigate their Dehn fillings all by computer. We already have the torus base (viz. the boundary torus) and the 1-handle (the point of tangency of the maximal cusp).

Our dream

We want to show that the above lemma implies that every hyperbolic knot complement is a Dehn filling on a torus-based handle structure with one 1-handle and one 2-handle both of valence at most 7 . We can enumerate these structures combinatorially and then investigate their Dehn fillings all by computer. We already have the torus base (viz. the boundary torus) and the 1-handle (the point of tangency of the maximal cusp). We need a 2 -handle-a disc.

Knotted necklaces

Knotted necklaces

Definition

A horoball necklace in a horoball diagram like the above is knotted when there's no disc "going around the necklace."

Knotted necklaces

Definition

A horoball necklace in a horoball diagram like the above is knotted when there's no disc "going around the necklace."

No small knots

No small knots

Lemma (MOM Project)

Necklaces with at most 8 beads are unknotted.
So we can find a disc in the universal cover along any necklace of 7 beads. But this disc might not descend to a disc in the knot complement.

Linking

Linking

Definition

An unknotted necklace in a horoball diagram is linked if a "similar" necklace "passes through" it.

Linking

Definition

An unknotted necklace in a horoball diagram is linked if a "similar" necklace "passes through" it.

A disc on such a necklace will not descend to an embedded disc in the knot complement.

Blocking

Blocking

Definition

An unknotted necklace in a horoball diagram is blocked if an "associate" pair of horoballs "crosses over" the necklace.

Blocking

Definition

An unknotted necklace in a horoball diagram is blocked if an "associate" pair of horoballs "crosses over" the necklace.

Lemma (MOM Project)

A "minimal" unblocked b-bead necklace in the horoball diagram of a hyperbolic knot complement is unlinked if $b \leq 7$.

Blocking

Definition

An unknotted necklace in a horoball diagram is blocked if an "associate" pair of horoballs "crosses over" the necklace.

Lemma (MOM Project)

A "minimal" unblocked b-bead necklace in the horoball diagram of a hyperbolic knot complement is unlinked if $b \leq 7$.

Lemma (Adams-Knudsen)
b-bead necklaces are unblocked for $b \leq 6$.

In conclusion

In conclusion

We're confident we can extend the lemma of Adams and Knudsen to $b=7$, thus reducing Gordon's conjecture to a finite enumeration of simple handle structures and their exceptional Dehn fillings.

In conclusion

We're confident we can extend the lemma of Adams and Knudsen to $b=7$, thus reducing Gordon's conjecture to a finite enumeration of simple handle structures and their exceptional Dehn fillings.

Thank you for your time!

