On the complexity of cusped non-hyperbolicity

Robert C. Haraway, III Neil R. Hoffman

Department of Mathematics Oklahoma State University

Joint Mathematical Meetings 2020, AMS Special Session: Applications and Computations in Knot Theory

Theorem (Haraway-Hoffman '19) For links in S^3 , hyperbolicity is in coNP.

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

<ロト 4 目 ト 4 目 ト 4 目 ト 1 回 の Q ()</p>

シック・ 川 (4 川 4 川 4 川 4 山 4 山 4

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

ペロト 4日 ト 4日 ト 4日 ト 4日 ト 9 へ (?)

Annular links

Theorem (Thurston '82) A link in S^3 is either the unknot, split, satellite, annular, or

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Theorem (Thurston '82) A link in S^3 is either the unknot, split, satellite, annular, or **hyperbolic**!

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Solid torus

€ 990

Normal discs

Fact

If there is an essential surface, then there is a **normal** essential surface.

Normal surface coordinates

・ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matching equations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{cases} t+q = t'+q' \\ \dots \\ t, t', \dots, q, q', \dots \ge 0 \end{cases}$$

$$\begin{cases} t+q = t'+q' \\ ... \\ t, t', ..., q, q', ... \ge 0 \end{cases}$$

・ロト・西ト・市・・市・ 市 うらの

Positive rational cone

$$\begin{cases} t+q = t'+q' \\ ... \\ t, t', ..., q, q', ... \ge 0 \end{cases}$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Prototheorem

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

If there is an essential surface, then there is one lying on an extremal ray there is a **vertex-normal** essential surface.

Fact

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

Hyperbolicity is decidable for links in S^3 .

3-Coloring

3-Coloring

Certificates

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Certificates

$1000000; 1000000; 0000010; 000000; \\ 1100000; 0100000; 0100000$

Workhorse Lemma

Lemma (Hass-Lagarias-Pippenger '99, 6.1.1) Each coordinate of a vertex-normal surface in a triangulation with t tetrahedra is at most 2^{7t-1} . Such a normal surface may be represented using only $7t \cdot (7t - 1)$ bits.

Workhorse Lemma

Lemma (Hass-Lagarias-Pippenger '99, 6.1.1) Each coordinate of a vertex-normal surface in a triangulation with t tetrahedra is at most 2^{7t-1} . Such a normal surface may be represented using only $7t \cdot (7t - 1)$ bits.

Theorem (Hass-Lagarias-Pippenger '99) Unknot recognition is in NP.

That is, for every diagram K of the unknot, there is a certificate of this fact verifiable in time polynomial in cr(K).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Theorem (Hass-Lagarias-Pippenger '99) Split link recognition is in NP.

Theorem (Baldwin-Sivek '19)

Torus knot recognition is in NP.

Theorem (Hass-Lagarias-Pippenger '99) Unknot recognition is in NP. That is, for every diagram K of the unknot, there is a certificate of this fact verifiable in time polynomial in cr(K).

Theorem (Hass-Lagarias-Pippenger '99) Split link recognition is in NP.

Theorem (Baldwin-Sivek '19)

Torus knot recognition is in NP.

Theorem (Hass-Lagarias-Pippenger '99) Unknot recognition is in NP. That is, for every diagram K of the unknot, there is a certificate of this fact verifiable in time polynomial in cr(K).

Theorem (Hass-Lagarias-Pippenger '99) Split link recognition is in NP.

Theorem (Baldwin-Sivek '19) *Torus knot recognition is in NP.* Theorem (Hass-Lagarias-Pippenger '99) Unknot recognition is in NP. That is, for every diagram K of the unknot, there is a certificate of this fact verifiable in time polynomial in cr(K).

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Theorem (Hass-Lagarias-Pippenger '99) Split link recognition is in NP.

Theorem (Baldwin-Sivek '19)

Torus knot recognition is in NP.

Theorem (Haraway-Hoffman '19) Satellite link recognition is in NP.

Theorem (Haraway-Hoffman '19) Nonhyperbolicity is in NP for links in S³. That is, hyperbolicity is in coNP for links in S³. Theorem (Haraway-Hoffman '19) Satellite link recognition is in NP.

Theorem (Haraway-Hoffman '19) Nonhyperbolicity is in NP for links in S³. That is, hyperbolicity is in coNP for links in S³

Theorem (Haraway-Hoffman '19) Satellite link recognition is in NP.

Theorem (Haraway-Hoffman '19) Nonhyperbolicity is in NP for links in S³. That is, hyperbolicity is in coNP for links in S³.

Lackenby's work

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆> < 豆</p>

Agol-Hass-Thurston machinery

$T^2 \times I$ -recognition on a napkin

Algorithm 1 is $\mathcal{T} pprox \mathcal{T}^2 imes$ /?	
1:	procedure $T^2 imes I?(T)$
2:	if ${\mathcal T}$ is not a homology ${\mathcal T}^2 imes {\it I}$ then
3:	return false
4:	Let κ be a boundary component of $\mathcal T.$
5:	Change ${\mathcal T}$ so κ has one vertex.
6:	for each edge e of κ do
7:	Let \mathcal{T}_{e} be \mathcal{T} "folded" along e .
8:	if \mathcal{T}_e is not a solid torus then
9:	return false
10:	return true

